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Introduction”®

In this report, we present results from analysis of Quantum Monte Carlo (QMC)
simulation data with the goal of determining internal structure of a 3N-dimensional
phase space of an N-electron molecule. We are interested in mining the simulation
data for patterns that might be indicative of the bond rearrangement as molecules
change electronic states. We examined simulation output that tracks the positions of
two coupled electrons in the singlet and triplet states of an H2 molecule. The
electrons trace out a trajectory, which was analyzed with a number of statistical
techniques.

We propose the following high-level questions for our investigation:

- Do high-dimensional phase spaces characterizing electronic structure of
molecules tend to cluster in any natural way? Do we see a change in
clustering patterns as we explore different electronic states of the same
molecule?

- Since it is hard to understand the high-dimensional space of trajectories, can
we project these trajectories to a lower dimensional subspace to gain a better
understanding of patterns?

- Do trajectories inherently lie in a lower-dimensional manifold? Can we
recover that manifold?

Dataset description:

We analyzed two datasets in this project. One is labeled “H2” and the other “H2tri”,
which is an H2 molecule in bonded singlet and non-bonded triplet states
respectively. Both systems belong to the D_» point group. Therefore, the 6-
dimensional phase space was mapped onto a 4-dimensional hyper-surface. The
datasets contain position information for 2 electrons (x1,y1) and (x2,y2). A derived
quantity called “scalar”, is computed as the distance of the electron pair to their mid-
point. Both datasets have 200K timesteps; we therefore have 1M data values.

* Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this

document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The
Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any
legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the
University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.



Hardware and Software used:

All of our analysis was conducted using existing libraries in R and MATLAB. We used
Vislt to perform interactive exploration of our results and to generate movies. We
used a high-end Linux workstation (4 quad-core Opterons, 32GB memory) and a
MacBook Pro for all of our tests. We also wrote custom C++ code to split the time-
series into frames and perform temporal tracking of clusters. We also wrote
modules to import R clustering results into Vislt.

Approaches:

In order to address our research questions, we used the following techniques:

1) Clustering:

K-means

Partition around medoids
Gap Method

Model Based clustering
Hierarchical clustering
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2) Dimensionality reduction:
a. PCA
b. Kernel PCA
i. Vanilladot

ii. RBF
iii. Polynomial
c. MDS

3) Manifold learning:
a. LLE/Hessian Eigenmaps
b. IsoMAP



Exploratory Visualization

Initially, we spent a significant amount of time exploring and getting a sense of the
data. While R has very powerful analysis capabilities, its interactive visualization
capabilities are limited, and we ended up using Vislt
(https://wecillnl.gov/codes/visit/) for this task. This was particularly important for
exploring individual clusters and their multi-dimensional distributions.

DB: H2tri_ScF_glisp-derter DB: H2tri_ScF_
Time:0

Figure 1: An overview plot of H2tri dataset colored by scalar value (left) and a zoomed in view
(right).

Apart from standard pair wise plots for the dataframe in R; we used pseudocolor
plots in VisIt. We were able to make background plots (indicating all particles), and
highlight specific clusters. We also used the parallel co-ordinates plot with much
success. This was important for isolating a cluster of interest, and examining the
other dimensions (spatial and scalar) for investigation. We also used Vislt to
generate movies from clustering results for timeframes.
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Figure 2: Examining clustering results from K-means procedure. Note how other clusters
obscure the central teal-colored cluster.
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Figure 3: The parallel co-ordinates plot, combined with selection operators assist in isolating
the cluster of interest and examining its multi-dimensional distribution.



Clustering Techniques

K-means

To begin our clustering investigation, we applied k-means clustering to all 200K
points of the H2 and H2tri datasets using the R kmeans() function. We specified a
range of 2 through 30 for the initial exploration. The k-means procedure returns a
withinss (within cluster sum of squares) measure, which is an indication of how
similar the cluster elements are to each other. We plot this in the figure below.
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Figure 4: Withinss measure for H2 (left) and H2tri (right).

Qualitatively, both plots for H2 and H2tri are similar, and they seem to indicate that
the right number of clusters might be between 2 and 10 (the knee of the curve
appears to lie in that range). Several of the computationally expensive clustering
procedures in the following sections require us to supply a range of clusters to
explore, and we use this range as a baseline. We note that the withinss measure will
never reduce to 0 (unless one has 200K clusters!), and beyond some number the
falloff is gradual; hence this interpretation is somewhat subjective.

At this point in time, we don’t know what the right value should be for the K-means
procedure (and if there’s a difference across datasets), so we chose the same value
for both datasets and examine the results.
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Figure 5: K-means clustering results for H2 for k=5
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Figure 6: K-means clustering results for H2tri, for k=5.

We observe that for both datasets, we don’t get a clean separation of the clusters.
The imposed cluster boundaries look somewhat artificial and are an artefact of the
multi-dimensional voronoi tessellation.

Subsequently, we tried splitting the dataset into multiple timesteps (with
overlapping windows) and performing k-means on individual timesteps. This
approach was intended to examine how the clustering would vary across timesteps.

We came across an interesting problem while visualizing results of temporal
clustering. Typical clustering algorithms (like k-means) don’t associate any
importance to the cluster label, i.e. a label of “1” in timestep 10 is just as good as
label “2” in timestep 11. If you perform k-means clustering across time-frames, each
time frame is processed independently of another. This is problematic for



visualization purposes, because one typically presents clusters with colors, and if
one naively presents temporal clustering results, the distraction of colors changing
every frame (even for the same cluster) overwhelms all other cues. In order to
alleviate this problem, we devised and implemented the following post-processing
technique: assuming that we have the same number of clusters in each time-frame,
we compute pair-wise distances between clusters in the current frame and the next
frame; sort the distances and assign a target cluster in the next frame to the closest
source cluster in the current frame. Once this assignment is done, remove all
instances of the target and source cluster from the sorted list, and repeat till all
clusters in the next frame have a match. This seems to work quite well, and is
demonstrated in some movies listed in the K-means section below:

http://vis.lbl.eov/~prabhat/MolVis/Results/H2-kmeans-8.mpg

http://vis.lbl.cov/~prabhat/MolVis/Results /H2tri-kmeans-8.mpg

http://vis.lbl.gov/~prabhat/MolVis/Results/H2-scalar-kmeans-8.mpg

http://vis.lbl.eov/~prabhat/MolVis/Results /H2tri-scalar-kmeans-5.mpg

The “scalar” version of the movies uses the “scalar” field alone for performing the k-
means clustering.

In general, the temporal results of the k-means clustering were interesting: we
observed an interesting odd/even split about the y-axis for the datasets (mostly
even for H2 and odd for H2tri).



Partition across medoids (PAM) technique

After exploring the K-means method, we wanted to test some other clustering
techniques. The PAM technique (implemented with the pamk methods in R fpc
package) tries to optimize silhouette width for a given range of clusters. This
seemed like a promising approach, however when we tried PAM on the complete
200K dataset, the technique failed to run, complaining of too many entries. We
therefore tried two lines of attack (which we have used throughout our report):

- Sampling 25K points from the entire dataset and running pamk

- Splitting the dataset into frames (or windows). We set the size of the window
to 20K points and randomly sample 5K points. We then “slide” the window
by 5K, index into the next 20K points, and sample 5K points for the next
frame. The specific choices of window size, window offset and number of
samples have been used in the past for similar analysis and datasets.

It is important to note that our windows are overlapping. This provides some
degree of robustness for our procedures.

Testing on 25K samples of the entire dataset

Figure 7: pamk results for the H2 (left) and H2tri (right) datasets.

Running pamk() on a random sample of 25K points reveals the optimal number of
clusters as 2 (for H2), and 3 (for H2tri). These cluster assignments are shown in
Figure 7. These results led us to investigate the following question: “What would
happen if we ran pamk() on the scalar field alone?” We tried that and obtained the
following result.
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Figure 8: pamk results for the H2 (left) and H2tri (right) timeseries.

Figure 8 shows 2 clusters are returned for both H2 and H2tri. In retrospect, this was
not a smart option to try out since scalar is just a 1D quantity, and pamk() partitions
around mid-point of the distribution. We see this with the vertical and horizontal
lines in the last row/column of the above figures.

Testing on the Time-series

Next, we applied pamk() clustering to each window frame of both datasets. The
following figures describe our results.

Variation in # pamk clusters for H2 over time Variation in # pamk clusters for Hatri over time
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Figure 9: Number of optimal pamk clusters for H2 (left) and H2tri (right) over time frames.
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We observe that the procedure is able to distinguish between the 2 datasets; it
returns 2 clusters (most of the time) for H2, and roughly 7 clusters for H2tri. This is
a promising result.

Variation in Silhouette Width for H2 over time Variation in Silhouette Width for H2tri over time
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Figure 10: Silhouette width for H2 (left) and H2tri (right).

Generally we observe similar silhouette width across the entire time-series; which
seems to indicate that the clustering is stable. The absolute magnitude of the
silhouette width is comparable across the datasets.

Figure 11: Representative frames with high silhouette widths. Time-frame #8 for H2 with 2
clusters is plotted on the left. Time-frame #17 for H2tri with 7 clusters is on the right.

Qualitatively, we see a dramatic difference in the shape of the clusters. While the 2
clusters for H2 are symmetric across the y-axis, the 7 clusters for H2tri seem to be
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localized in different regions. Looking at the (x1,y1) plot, the region in bottom
center has multiple overlapping clusters, which is interesting.

Pamk clustering for Time-series without the scalar value

Upon examining at the pamk() clustering results, we next conducted the analysis for
the spatial dimensions alone (x1,y1,x2,y2) without the scalar value. We now present
the results of this analysis.
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Figure 12: pamk results for time-series. HZ2 is on the left and H2tri on the right.

Similar to the earlier results for the entire dataset, we seem roughly 2 clusters being
returned for H2, and roughly 6 clusters being returned for H2tri.
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Figure 13: Silhouette Width for H2 (left) and H2tri (right).
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The silhouette width also remains roughly same across the time frames, which
indicates robustness to our choice of sampling parameters.

Figure 14: Representative frames. Timestep 20 for H2 is plotted on left. Timestep 20 for H2tri
is plotted on right.

Again, we see a symmetric distribution about the y-axis for the left figure, and
clusters of a very different shape on the right.
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Gap Method

Next, we applied another technique: the Gap statistic (from the R lga library), for
returning the optimal number of clusters. The gap() call takes either the tibshirani
or the DandF criteria, and uses Linear Grouping Analysis to compute the number of
clusters.

Initially, both techniques (tibshirani and DandF criteria) failed to run on the entire
dataset. Even choosing a subset of 25K point failed, the Iga() procedure complained
that it could not converge in the default (20) number of iterations. We overwrote
the default implementations of these procedures to increase the number of
iterations to 500, after which we did not encounter convergence warnings.

Running with the DandF criteria failed completely. For 10K points from the entire
dataset, DandF ran for 48 hours, did not complete execution. We then specified a
single timeframe with 1000 points and 1 boot-iteration, the procedure ran for 24
hours and did not complete execution! Consequently, we had to abandon these
criteria.

We had more success with the tibshirani criteria, at least in terms of getting the
procedure to run. For a sample of 50K points from the entire dataset, we get the
following results:
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Figure 15: gap results for H2 (left) and H2tri (right).

Figure 15 shows the gap method returning 2 clusters for H2 (left) and H2tri (right).
Hence, we are unable to distinguish between the two datasets based on this
procedure.
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Next, we applied the procedure to the time-series.

# clusters return by gap for H2 # clusters return by gap for H2tri

# clusters
# clusters
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time frames time frames

Figure 16: gap results for H2 timeseries (left) and H2tri timeseries (right).

Figure 16 shows that we obtain roughly 3 clusters for both the H2 and H2tri.
Running the procedure on each frame was computationally very expensive, we had
to increase the window offset to 15K to assure that the procedure completed in a
reasonable amount of time (~48 hours).
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Model based clustering

We tried to use model based clustering to return the optimal number of clusters.
The procedure does hierarchical clustering on Gaussian mixture models and uses
the BIC criteria to determine the number of clusters.

We ran for more than 48 hours to process 25K samples from the entire dataset. The
procedure warned that the iterations still had not converged. First we tried the
procedure with the default (2-8) number of clusters, and we got a warning: “optimal
number of clusters occurs at max choice”. We then increased the number of clusters
to 20, and still obtain the same warning message: “optimal number of clusters
occurs at max choice” “best model: ellipsoidal, unconstrained with 20 components”.
We believe that the procedure might have settled into a local optima (the loss
function is non-convex), hence we have no reason to trust the clustering results.
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Figure 17: Model based clustering results for H2 (left) and H2tri (right). The BIC plots seem to
indicate that the procedure has not converged.
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Figure 18: Uncertainty plots of H2 (left) and H2tri(right). There are multiple overlapping
clusters, which is not a good sign.

Hierarchical Clustering

Finally, we tried to use hierarchical clustering using the R pvclust library.
Unfortunately, even after running for 48 hours, we could not obtain results for 50K
points. Furthermore, the lack of interactive options to navigate the hierarchical
clustering result made it hard for us to interpret the results. Ideally, we would want
interactive capabilities to selectively move up and down the hierarchy tree.
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Dimensionality Reduction Techniques

We now explore dimensionality reduction techniques (followed by clustering) to see
if we can examine alternate patterns in the dataset.

PCA

The canonical technique for dimensionality reduction is Principal component
analysis. We use the R princomp() function call. We were careful to make sure that
we center the data, before doing PCA. At the same time, we did not scale the values
to unit variance, this is important because all dimensions (x1,y1,x2,y2,scalar) are
defined in the same space, and larger values of scalar are more important
chemically, than smaller values of scalar.

Fortunately, PCA was one of the techniques that was able to process the entire
dataset.

PCA Results for H2:

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.309676 1.0077407 0.9921938 0.9772050 0.57428558

Proportion of Variance 0.343052 0.2031093 0.1968907 0.1909869 0.06596112

Cumulative Proportion 0.343052 0.5461613 0.7430520 0.9340389 1.00000000

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
x1 0.707 0.707
yl 0.508 0.707 0.492
X2 -0.707 0.707
y2 0.508 -0.707 0.492
scalar 0.696 -0.719
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Figure 19: Variance plot for PCA on the H2 dataset

We observe that roughly 4-5 components are sufficient to capture the variance in
the dataset. We observe a similar trend further on in the report. This seems to
indicate that the dataset does not lie on a significantly lower dimensional subspace.

To facilitate the effect of the PCA on the dataset, we will henceforth present a set of
5 plots. These plots (while beautifully rendered) can be a little hard to understand,
so we provide an explanation. Generally, we find that using 5 components (either
from the PCA or Kernel PCA techniques) is sufficient to explain the dataset.
Therefore we create a new dataframe with pairs of “Comp 1”, “Comp 2”, “Comp 3”,

“Comp 4”, “Comp 5”, which correspond to the principal components.

These pair wise plots span the new space. We can now project our entire dataset
into this space and we would see black dots indicating the distributions. But we are
interesting in observing what effect the new basis has on the original values
(x1,y1,x2,y2,scalar). So we choose to color each set of pair wise plots with the original
dimensions x1, y1, x2, y2 and scalar. This results in 5 plots.

It can be a little hard to interpret a different 5D space (if it wasn’t already hard
enough to understand the original 5D space) . But we can observe a few patterns.
For instance in the following image, Plot #1, showing x1 projected onto the new
basis, has a diagonal strip for Comp 3 and Comp 5. This seems to indicate that the
new basis has been successful in separating clusters in that dimension. For the same
plot, if we see Comp1 and Comp 4, all the clusters are jumbled up, which means that
specific basis was not able to separate the clusters.

We would like to make a minor note regarding R plotting routines. For some reason,
R assumes that if you want to color by some value, that value should be in the range
(1 to ). However, our values (x1 for instance) are from -3 to +3. Therefore, by
default most of our data was plotted in white, which mislead us until we addressed
the problem by offsetting the range.
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PCA Results for H2tri

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 1.2641043 1.0540908 1.0089498 0.9909643 0.5393682

Proportion of Variance 0.3195935 0.2222226 0.2035970 0.1964030 0.0581839

Cumulative Proportion 0.3195935 0.5418161 0.7454131 0.9418161 1.0000000

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
x1 0.707 0.707
yl 0.478 0.707 -0.521
x2 -0.707 0.707
y2 0.478 -0.707 -0.521
scalar 0.737 0.676

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
SS loadings 1.0 1.0 1.0 1.0 1.0
Proportion Var 0.2 0.2 0.2 0.2 0.2
Cumulative Var 0.2 0.4 0.6 0.8 1.0
Plot of variance with # components for H2tri
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Figure 20: Variance plot for PCA on the H2tri dataset
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For both H2 and H2tri, we observe interesting diagonal patterns and some
horizontal /vertical patterns in the preceding plots. The goal of the PCA analysis was
to let us explore clustering in another basis space, and this is what we do next. We
tried clustering using pamk() analysis on this new basis. We applied the analysis on
the timeseries and got the following results:

Optimal number of clusters returned for PCA projected H2 data Optimal number of clusters returned for PCA projected H2tri data
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Figure 21: pamk results for H2 timeseries (left) and H2tri timeseries (right) on the new basis.

We again observe that pamk() is able to distinguish between the H2 (left) and H2tri
(right) datasets based on the number of clusters over the time-series. The number of
clusters for H2 is 2 and higher than 2 (maybe 3 or 7) for H2tri. We choose a
representative frame (e.g. #17) for both datasets to further examine the shape of the
clusters.

24



Figure 23: Corresponding clusters in Frame 17 for H2(left) and H2tri (right) in the original
space.

We closely examined these clusters, especially in contrast with the vanilla pamk()
clusters. It appears that this set of clusters is structurally more interesting, they
seem to be located in the right regions. They are able to “diffuse” more with each
other, which is possible since this is a noisy simulation. The boundaries of these
clusters are also more feasible. From a chemistry point of view, silhouettes can
correspond to active chemical surfaces, which is an interesting link. But trying to
maximize all silhouettes at the same time (which is what the pamk procedure does)
is something that we need to examine in more detail.

Note that we did not perform PCA (or other dimensionality reduction analysis) on
the timeseries data. We could have easily done so, the major issue was how we
would integrate the (possibly) different basis sets across the multiple timeframes.
Morevoer, PCA was able to handle the entire dataset at once, which is what was we
wanted to do.

MDS

We tried to apply Multi-dimensional scaling using the R cmdscale() function call.
This version failed with an out of memory error for 200K points. We reduced the
number of points to 50K, but the version still failed. Upon looking at the
implementation, we realized that MDS internally creates an O(n”2) matrix, which
makes this method intractable for our dataset.
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Kernel PCA

Kernel techniques offer a powerful extension of classification/clustering methods by
adding non-linear combinations of input dimensions. We wanted to explore Kernel
PCA techniques for our dataset, but we faced the following challenges:

- We had to manually explore the parameter space for different kernel
parameters. This is in stark contrast to the classification case, where Kernel
SVM techniques have some labeled/training data, and implementations are
able to automatically determine parameters for different kernels (polynomial
degree, rbf sigma, etc) by bootstrapping. We can’t do that for our clustering
problem.

- Kernel PCA techniques fail outright for 200K points, in fact they barely work
for 10K points. We had to explicitly create feature maps (essentially
augmenting the non-linear terms to the original dataset) and perform regular
PCA.

We ended up randomly sampling 5K points from the entire dataset, and manually
exploring different kernel PCA techniques (rbfdot, polydot, vanilladot, tanhdot,
laplacedot, besseldot, anovadot and splinedot from the kpca() function in the library
kernlab). Our criteria for determining a ‘good’ kernel (and associated parameters),
was one that would result in a good separation of the original dimensions.

Of course, we stood the risk of not choosing a representative sample of the dataset
and determining the non-optimal set of parameters, but we didn’t have much choice.
One can envision more computationally extensive/elaborate techniques to make the
procedure less subjective.

From our explorations, we found that an rbfdot kernel (sigma=0.1), vanilladot and
polydot (degree 2 polynomial) result in interesting patterns, and we chose to pursue
those more carefully. The splinedot kernel was the most spectacular in terms of its
failure, it ran for ~24 hours and produced rather poor results.

For the three chosen kernels, we explicitly constructed the new feature vectors
using some C++ code and augmenting the data files. We then ran conventional PCA
analysis. The results are presented in a fashion similar to the last section.
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Plots of variance for multiple kernels
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KPCA w/ polynomial degree 2 kernel for H2 KPCA w/ polynomial degree 2 kernel for H2tri
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For all of the kernels, we generally find that 5 components are sufficient to explain
the variance in the augmented dataset. We therefore use the first 5 components and
present the results from projecting the (x1,y1,x2,y2,scalar) values on the new basis.
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In general, we observe that the plots reveal intricate patterns that are more complex
than the PCA case. We tend to see somewhat similar patterns across the three
kernels, which is probably because they share similar inner products. Apart from
diagonal strips, which had emerged in the PCA case, we see concentric patterns and
strips that fan out radially (exemplified in the H2tri scalar projection for Comp1 and
Comp 2).

Unfortunately, understanding an alternate linear basis is complex enough,
understanding a non-linear basis is a non-trivial task that requires mapping the new
patterns back to a scientifically relevant phenomena or property. We are currently
working on this.
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Followed by the KPCA projections, we applied pamk() analysis to determine the
optimal number of clusters for the time-series of the 2 systems.

Optimal number of clusters for H2 Optimal number of clusters for H2tri
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Figure 24: pamk results for H2 timeseries (left) and H2tri timeseries (right) on KPCA basis.

For the 2nd degree polynomial kernel, we get 2 clusters for H2. There appear to be
more than 2 clusters for H2tri, and while it’s hard to quantify exactly how many
more clusters there are (maybe 3 or 4), the fact that there is a difference is
interesting.

Figure 25: pamk clusters for H2 (left) for timestep=20 and H2tri (right) for timestep=15.
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Manifold Learning Techniques

Finally, we explored some manifold learning techniques for the datasets. We were
unable to find adequate implementations of the packages in R, and eventually used a
Toolbox for Dimensionality Reduction in MATLAB.
http://homepage.tudelft.nl/19j49 /Matlab Toolbox for Dimensionality Reduction.h
tml

First, we tried some techniques to determine the intrinsic dimensionality of the
system. Most techniques had computational problems in analyzing the entire
dataset; we randomly sampled 50K points from the dataset and running analysis on
those points. We obtained the following results:

H2 H2tri
Eigenvalue 4 4
Maximum Likelihood 5 5
Estimate
Correlation Dimension 4 4
Geodesic Minimum 4 4
Spanning Tree

These results seem to be consistent with our earlier tests with PCA/KPCA
techniques.

Thereafter, we applied some manifold learning techniques (Locally Linear
Embedding, Hessian LLE and IsoMAP). Again, we faced computational problems
with all methods. None of the methods was able to handle 200K points. We were
able to get LLE to run on 2000 points, but it is unclear if one can generalize to the
complete dataset even if one is able to learn a manifold from such a sparse sample.
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Figure 26: LLE embedding for H2(left) and H2tri(right). Images are colored by the scalar
value.

Images are colored by the scalar value of the original points. We do not observe any
interesting pattern in the embedding wrt the scalar values. This form of
visualization in fact made us realize that such images are useful only if one could
attach an “icon” to the original data point. So things like small thumbnails for
images, or letters, or text words greatly help in understanding the projection. But if
one has raw multi-dimensional data, such embeddings can be very hard (if not
impossible) to understand.

The Hessian LLE implementation in the toolbox failed to run on 2000 points with a
LU factorization error. It could be we could avoid this failure by adjusting some
thresholds or parameters within the Matlab toolbox code, or that there is some
other fundamental problem with applying the Hessian LLE to this dataset (which at
best has a 4D manifold). Finally, we tried to apply the IsoMAP technique to 2000
points. Following a pattern, which we had seen numerous times by now, the code
tried to allocate a O(n”2) matrix and the implementation was unable to handle the
large internal data structures.
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Scalability issues

The greatest hurdle that we faced in the current project was the lack of scalability of
current R libraries for clustering and dimensionality reduction. Apart from the two
notable examples of K-means clustering and vanilla PCA, all other techniques simply
failed to load the entire dataset (200K points). The modes of failure ranged from
procedures complaining of vectors being too long, running for extended periods of
time (48-72+ hours) without completing execution and failing to converge. While
we explicitly ran on a machine with 32GB of memory [thereby preventing memory
allocation issues], most techniques merely used up 2-6GB of memory; which
indicates that internal 32-bit addressing was not a constraint. While it would have
been nice to have access to a multi-core or parallel version of R (R+MPI), we simply
ran out of time to explore that in this project.

We overcame these issues by resorting to sampling a subset of the particles, or
splitting the dataset into overlapping frames followed by sampling, both of which
are adhoc solutions. We could have taken multiple samples (for analysis) in every
timeframe; this would have provided us with some error bars for our various
estimates. But even single iterations of analysis on individual samples took
exceedingly long times (~30-45 minutes) and it was impractical to do multiple runs.
We do note however, that in many areas in science, error bars are almost as
important as the observation itself, and we do plan on running more tests in future
work.
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Summary of Results

This project was intended to address the following scientific questions:

1) Do high-dimensional phase spaces characterizing electronic structure of
molecules tend to cluster in any natural way? Do we see a change in
clustering patterns as we explore different electronic states of the same
molecule?

2) Since it is hard to understand the high-dimensional space of trajectories,
can we project these trajectories to a lower dimensional subspace to gain
a better understanding of patterns?

3) Do trajectories inherently lie in a lower-dimensional manifold? Can we
recover that manifold?

After extensive statistical analysis, we are now in a better position to respond to
these questions.

1) We definitely see clustering patterns, and differences between the H2 and
H2tri datasets. These are revealed by the pamk method in a fairly reliable
manner and can potentially be used to distinguish bonded and non-
bonded systems and get insight into the nature of bonding.

2) Projecting to a lower dimensional subspace (~4-5) using PCA or Kernel
PCA reveals interesting patterns in the distribution of scalar values,
which can be related to the existing descriptors of electronic structure of
molecules. Also, these results can be immediately used to develop robust
tools for analysis of noisy data obtained during QMC simulations

3) All dimensionality reduction and estimation techniques that we tried
seem to indicate that one needs 4 or 5 components to account for most of
the variance in the data, hence this 5D dataset does not necessarily lie on
a well-defined, low dimensional manifold.

In terms of specific clustering techniques, K-means was generally useful in exploring
the dataset. The partition around medoids (pam) technique produced the most
definitive results for our data showing distinctive patterns for both a sample of the
complete data and time-series. The gap statistic with tibshirani criteria did not
provide any distinction across the 2 dataset. The gap statistic w/ DandF criteria,
Model based clustering and hierarchical modeling simply failed to run on our
datasets.

Thankfully, the vanilla PCA technique was successful in handling our entire dataset.
PCA revealed some interesting patterns for the scalar value distribution. Kernel PCA
techniques (vanilladot, RBF, Polynomial) and MDS failed to run on the entire
dataset, or even a significant fraction of the dataset, and we resorted to creating an
explicit feature map followed by conventional PCA. Clustering using K-means and
PAM in the new basis set seems to produce promising results. Understanding the
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new basis set in the scientific context of the problem is challenging, and we are
currently working to further examine and interpret the results.

Science Impact

We have outlined a set of statistical techniques suitable for qualitative and
quantitative analysis of the results of stochastic simulations of N-particle fermionic
systems. Thus far, the existing forms of analysis require assessment of the relevant
noisy scalar fields by visual inspection. Our work is an important step towards
automation of the respective analytical techniques. Our current results support the
initial assumption that bonding phenomena can be related to the rearrangements of
high-dimensional phase-spaces of N-electron systems. These relations can be
further explored by looking into quantum-chemical nature of the identified parts of
the studied phase-spaces. This opens up a new avenue for the generalization of the
theory of chemical bonding.

Future Work

We would like to address the following important questions in our future
endeavors:

- Can the pam clustering technique resolve bonded vs. non-bonded states for
other molecules?

- Why do the gap statistic and model based clustering techniques fail on this
dataset? Is there an underlying scientific reason?

- Is there a chemically relevant interpretation for the features computed by
various clustering techniques?

- Can we design a clustering criteria based on known quantum chemical
concepts and descriptors?

Finally, we were greatly hampered by the lack of scalable R implementations for
most of the clustering and dimensionality reduction techniques. We have simulation
data with dozens of coupled electrons and 10M+ timesteps. We would like to
explore parallel R or other C++/Matlab code and test if our results still hold at scale.
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Appendix

In this section, we list a few representative codes that we ran for the different
methods.

H2 =read.table("/d/visguests/prabhat/NERSC/Zubarev/new/H2_ScF_disp.data”, header=TRUE)
library("cluster")
fits=list()
for (iin 2:20) {
fits[[i]]=kmeans(H2, i,iter.max=1000)
}
HARHHHH AR A HHHHARHHBHARAHHEHH
library("mclust")
num_models=1:20
fit=Mclust(H2,G=num_models)
HARHHHH AR A HHHHARHHBHARAHHEHH
split = sample(nrow(H2),10000)
H2_set = t(H2[split,])
pvfit = pvclust(H2_set, method.dist="euclidean", nboot=10)
HARHHHH AR A HHHHARHHBHARAHHHHH
H2 = scale(H2, center=TRUE)
H2fit = princomp(H2)
summary(H2fit) # print variance accounted for
loadings(H2fit) # pc loadings
H2fit$scores # the principal components
HAHHHHH AR A HHHHARHHBHARAHHEHH
library(lga)
split<-sample(nrow(H2),10000)
H2_gap_tibshirani=gap(H2[split,], K=10, B=2, niter=500)

H2_gap_dandf =gap(H2[split,],K=10,B=2,criteria="DandF",niter=500)



kpcl<-kpca(~.,data=H2_train_sc[,-6] kernel="rbfdot" kpar=list(sigma=0.1),features=3)

##besseldot:
kpc6<-kpca(~.,data=H2_train_sc[,-6] kernel="besseldot" kpar=list(sigma=0.1),features=2)
##ANOVA:
kpc7<-kpca(~.,data=H2_train_sc[,-6] kernel="anovadot" kpar=list(sigma=0.1,degree=10),features=2)

HHHHHHHHHHBHAHHHHARHBHAHHHHHS

######## load the pre-computed rbf features directly for H2, sigma = 0.1
H2 =read.table("/d/visguests/prabhat/NERSC/Zubarev/new/H2_ScF_rbf.data", header=TRUE)
H2 = scale(H2, center=TRUE)
H2_proj_data = as.matrix(H2) %*% H2_fit$loadings[,1:5]
H2_Kkfit = kmeans(H2_proj_data, 7, iter.max=5000)
# pamk for the new basis
H2_clusters = list()
H2_nclusters = list()
H2tri_clusters = list()
H2tri_nclusters = list()
offset_size = 5000
frame_size = 20000
sample_size = 5000
start_frame = 1
end_frame = 36
for (i in start_frame:end_frame) {
print(i)
offset = (i-1)*offset_size
start_range = offset
end_range = start_range + frame_size
split = sample(start_range:end_range, sample_size)
pamk_fit = pamk(H2tri_proj_data[split,], krange=2:10)

H2tri_clusters[[i]] = pamk_fit



H2tri_nclusters[[i]] = pamk_fit$nc

print(pamk_fit$nc)

HH#AHHAHHAH SR A HHHH SRS 3
# MATLAB codes for intrinsic dimensionality estimation and manifold learning
HH#AHHHHHAH SR A HHHH SRS

addpath(genpath('/gpfs/home/prabhat/Zubarev/drtoolbox'))

H2 =load('H2_ScF_disp.data');

H2tri = load('"H2tri_ScF_disp.data');

num_points = 50000;
shuffle=randperm(200000);

indices=shuffle(1:num_points);

no_dims = round(intrinsic_dim(H2(indices,:), 'EigValue"))
no_dims = round(intrinsic_dim(H2(indices,:), 'MLE"))
no_dims = round(intrinsic_dim(H2(indices,:), 'CorrDim'))

no_dims = round(intrinsic_dim(H2(indices,:), 'GMST"))

num_points = 1000;
shuffle=randperm(200000);

indices=shuffle(1:num_points);

H2_labels = H2(indices,5);
mappedH2 = compute_mapping(H2(indices,:), 'LLE', 5);
mappedH2 = compute_mapping(H2(indices,:), 'HessianLLE', 5);

mappedH2 = compute_mapping(H2 (indices,:), 'IsoMAP", 5);
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